
Data Quality and Query Cost in Wireless Sensor
Networks

David Yates
Computer Information Systems Dept.

Bentley College
Waltham, Massachusetts 02452

Email: dyates@bentley.edu

Erich Nahum
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, New York 10532

Email: nahum@watson.ibm.com

Jim Kurose
and Prashant Shenoy

Dept. of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003

Abstract— This research is motivated by emerging, real-world
wireless sensor network applications for monitoring and control.
We examine the benefits and costs of caching data for such
applications. We propose and evaluate several approaches to
querying for, and then caching data in a sensor field data server.
We show that for some application requirements (i.e., when
delay drives data quality), policies that emulate cache hits by
computing and returning approximate values for sensor data
yield a simultaneous quality improvement and cost savings. This
win-win is because when system delay is sufficiently important,
the benefit to both query cost and data quality achieved by using
approximate values outweighs the negative impact on quality due
to the approximation. In contrast, when data accuracy drives
quality, a linear trade-off between query cost and data quality
emerges. We also identify caching and lookup policies for which
the sensor field query rate is bounded when servicing an arbitrary
workload of user queries. This upper bound is achieved by having
multiple user queries share the cost of a sensor field query.
Finally, we demonstrate that our results are robust to the manner
in which the environment being monitored changes using two
different sensor field models.

I. I NTRODUCTION

Over the next several years, wireless sensor networks will
enable many new sensing applications, ranging from envi-
ronmental and infrastructure monitoring to commercial and
industrial sensing. There are many performance metrics of
interest for sensor networks. We focus on two that are common
to the vast majority of sensor networks:

1) The accuracyof the data acquired by the application
from the sensor network; and

2) the total system end-to-end delayincurred in the se-
quence of operations needed for an application to obtain
sensor data.

Although almost all sensor network applications have perfor-
mance requirements that include accuracy and system delay,
their relative importance may differ between applications. We
therefore define thequality of the data provided to sensor
network applications to be a combination of accuracy and
delay. As in most systems, improved quality usually comes
at somecost. For current wireless sensor networks, the most
important component of cost typically is the energy consumed
in providing the requested data. In turn this is dominated by
the energy required to transport messages through the sensor

field. This cost versus quality trade-off has recently been an
active area of research [1], [2], [3], [4], [5].

To perform our research, we construct a sensor network
model. We then develop novel policies for caching sensor
network data values in the gateway server, and then retrieving
these values via cache lookups. We also propose a new
objective function for data quality that combines accuracy and
delay. Finally, we use our sensor network model to assess
the impact of several factors on query cost and data quality
performance:

• Our caching and lookup policies; the
• relative importance of data accuracy and system end-to-

end delay; and the
• manner in which the sensed data values in the environ-

ment change.

This assessment evaluates seven different caching and lookup
policies by implementing them in a simulator based on CSIM
19 [6], [7].

Almost all sensor network deployments have three main
components:

1) One or more sensor fields consisting of sensor field
nodes that communicate with one or more base stations;

2) One or more data servers (or gateways) that accept
requests for sensor data and generate replies for these
requests; and

3) Monitoring and control centers that are connected to the
appropriate sensor data servers via a backbone network.

Fig. 1. Sensor Network Deployment Example.

Figure 1 shows an example of such a deployment with two
sensor fields, one data server, and one monitoring and control
center. If the data server shown in this figure is augmented
with storage, it can store and cache sensor field values that
are carried in query replies.



The caching approaches we propose are designed to be gen-
eral since they make no assumptions about whether the overall
sensor network architecture uses a structured or unstructured
data model. In other words, our approaches are independent
of the database model for the sensor network. The database
could implement a structured schema that extends a standard
like the Structured Query Language (SQL). The TinyDB and
Cougar systems both advocate this approach [8], [9], [10].
However, the schema could also be modified while the system
is running (e.g., as in IrisNet [11]). The database model might
also expose a low-level interface to the application. Directed
Diffusion [12] does this by allowing applications to process
attributes or attribute-value pairs directly.

A. Data Acquisition and Caching in Sensor Networks

Consider the impact of adding a cache to the data server
or gateway in Figure 1. Figure 2 shows such a system in
which a cache is added to the internal architecture of the
server, on the “border” between the sensor field(s) and the
backbone network. There are two possible data paths that

Fig. 2. Sensor Network Data Server or Gateway with a Cache.

can be traversed in response to a query from the backbone
network:

• For a cache miss, a query is sent to the sensor field by
the gateway, incurring a cost. To update the cache, each
sensor data valuevi is copied into a cache entry. A cache
entry, eli, associates with locationli, the most recent
value observed at this location, and its timestamp into
the tuple 〈li, vi, ti〉. We say that thesystem delay, Sd,
is the time between an application query arriving at the
point labeledQuerym in Figure 2 and the corresponding
reply departing fromReplym. Thevalue deviation, Dv, is
the unsigned difference between the data value inReplym
and the true value atli whenReplym leaves the gateway
reply queue.

• The data path for a cache hit is much shorter than for
a cache miss. For example, if the cache is indexed by
location, and a cache entry is present for a locationli
specified in a query, a reply can be generated using only
the information in the tuple that corresponds toli. Since

the processing required to perform this cache lookup and
generate a reply is relatively small, we assume that the
system delay for a cache hit (Sd) and its associated cost
are both zero. We also determine the value deviation for
cache hits (Dv) in the same way as for cache misses.

We exploit spatial locality within sensor field data in the
cache. Specifically, some caching and lookup policies allow
cache “hits” in which the value at locationli is approximated
based on valuesvi′ from neighboring location(s){li′ ∈
N(li)}. (HereN(li) denotes the neighborhood of locationli.)
We develop and describe three such policies that implement
what we callapproximatelookups and queries. We compare
these approximate policies with fourpreciselookup and query
policies that only use information associated with locationli
to process queries that reference locationli.

II. COST AND QUALITY IN SENSORNETWORKS

A. Caching and Lookup Policies

Our caching and lookup policies are designed to explore
alternative techniques for increasing the effective cache hit
ratio, and thus conserving system resources.

All of the caching and lookup policies we propose and eval-
uate incorporate an age threshold parameterT that specifies
how long each entry is stored in the cache. We now describe all
seven of our caching and lookup policies.All hits, all misses,
simple lookupsand piggybacked queriesimplement precise
lookups and queries. On the other hand,greedy age lookups,
greedy distance lookups, andmedian-of-3 lookupsimplement
approximate lookups and queries.

• All hits (age threshold parameterT = ∞): In this policy
cache entries are loaded into the cache but are never
deleted, updated, or replaced.

• All misses (age parameterT = 0): In this policy entries
are not stored in the cache.

• Simple lookups (T ): This caching policy results in a
cache hit or a cache miss based on a lookup at the location
specified in the user query. Once an entry is loaded into
the cache, it is stored forT seconds and then deleted.

• Piggybacked queries(T ): A cache hit or miss is deter-
mined only by a lookup at the location specified in the
user query. If a query has already been issued to fill the
cache at a particular location, subsequent queries block
in a queue behind the original query and leverage the
pending reply to fulfill multiple queries.

• Greedy age lookups(T ): A cache hit or miss is de-
termined by a lookup first at the location specified in
the query, and second by lookups at all neighboring
locations. If there is more than one neighboring cache
entry, the freshest (newest) cache entry is selected. As for
piggybacked queries, if a query has already been issued to
fill the cache at any of these locations, subsequent queries
block in a queue behind the original query and leverage
the pending reply to fulfill multiple queries.

• Greedy distance lookups(T ): A cache hit or miss is
determined by a lookup first at the location specified



in the query, and second by lookups at neighboring
locations. If there is more than one neighboring cache
entry, the nearest cache entry is selected.

• Median-of-3 lookups (T ). A cache hit or miss is deter-
mined by a lookup first at the location specified in the
query, and second by lookups at all neighboring locations.
If there are at least three neighboring cache entries, the
median of three randomly selected entries is selected as
the value returned with a cache hit. If there are one or
two neighboring cache entries, a randomly selected entry
provides a cache hit. Otherwise, the query is treated as a
miss.

By implementing blocking behind pending sensor field
queries, four of these seven policies have an upper bound on
the sensor field query rate,Rf . Specifically,

max(Rf ) =
|N|
T

. (1)

The four policies are piggybacked queries, median-of-3
lookups, and the two approximate greedy policies. In Equation
(1), |N| is the number of distinct locations that can be specified
in queries for sensor data.

B. Sensor Network Data Quality and Query Cost

We normalize sensor network data quality in order to
compare quality measurements from different sensor networks,
as well as for different system parameters (e.g., number of
sensors, distance between sensors, etc.) We define data quality
to be a linear combination of normalizedsystem delayand
normalizedvalue deviationusing a parameterA, which is
the relative importance of delay when compared with value
deviation. The expression that defines quality, denotedQn,
is:

Qn = A
1

(1 + e−b)
+ (1−A)

1
(1 + e−c)

(2)

where− b and− c are the exponents used to performsoftmax
normalizationon delays and value deviations, and0 ≤ A ≤
1. The exponents in Equation (2) are thez scores of their
respective values and are therefore defined as follows:

− b = − Sd −mean(Sd)
stddev(Sd)

, and (3)

− c = − Dv −mean(Dv)
stddev(Dv)

. (4)

Since small values of system delay (Sd) and value deviation
(Dv) are both desirable, smaller values ofQn, e.g., 0 <
Qn � 0.5 imply better data quality, and larger values of
Qn correspond to worse quality. Softmax normalization yields
transformed values that lie in the range[0, 1]. Because of this
property, and because of our definition ofA, 0 ≤ Qn ≤
1. This type of normalization has been used by others in
neural networks; data mining for pattern recognition; and data
classification [17], [18], [19], [20].

We use two different sensor field models in our research in
order to generalize our results. The first model uses correlated
random variables to simulate how the environment changes

for 1000 sensor locations. This model gives us the flexibility
to vary how the environment changes. The second model uses
real-world trace data to drive how the environment changes.
This trace data was taken from 54 light, temperature, and
humidity sensors deployed in the Intel Berkeley Research lab
over a five-week period [21].

C. Simulated Changes to the Environment

For the simulated changes to environment, the sensor field
is a 3-dimensional field with rectangular planes on six faces.
There is an 8-unit spacing between 10 sensors in the X-
dimension, a 6-unit spacing for 10 sensors in the Y-dimension,
and a 4-unit spacing for 10 sensors in the Z-dimension. Four
base stations are placed on the X-Y plane. These four base
stations are then connected to the gateway server that has
the common cache. The sensors always communicate with
their closest base station, and the properties of each one-way
communication to and from locationl are as follows:

Costl = p r2
b′ | min(Costl) = 1 unit (5)

where rb′ is the distance between locationl and its nearest
base stationb′, andp is the normalization constant for the set
of costs. In addition,

Delayl = q rb′ | max(Delayl) = 1 second (6)

where q is the normalization constant for the set of delays.
We assume that all four base stations communicate with the
gateway server containing the cache at zero cost, with zero
delay, and using infinite bandwidth. Finally, each base station
is connected to the sensor field with an access link with a
capacity of 25 queries per second.

D. Trace-driven Changes to the Environment

For the trace-driven changes to the environment, our second
sensor field model has more than an order of magnitude fewer
locations (54 instead of 1000). The sensors are arranged in
a 2-dimensional field at the numbered locations in Figure 3,
which is taken from [21]. Each entry in the trace is from a
Mica2Dot sensor, which senses humidity, temperature, light,
and battery voltage. The trace contains over 2.2 million entries
taken over more than five weeks in early 2004. This means
that one location reads and records new sensor field values

Fig. 3. Sensor Field at Intel Berkeley Research Lab.

an average of about once every 1.33 seconds. We wanted to
use the most dynamically changing of the sensor field values



in our model to maximize the error in query accuracy. We
therefore chose the value with the largest average difference
between samples. This was light intensity, which is reported
in Lux.

Again, we assume that sensors always communicate with
their closest base station, and the cost and delay of each
one-way communication are given by Equations (5) and (6),
respectively.

E. Query Workload Model

We use a query workload model that is well suited for sen-
sor network applications that include monitoring and control
functions. Many of these applications have a workload that
includes a periodic arrival process of queries as well as a ran-
dom arrival process. There are examples of query workloads
that capture both of these components in the literature, e.g.,
[12], [13], [15]. On the other hand, other researchers assume
that queries either have exclusively periodic interarrival times
[9], [10], [14] or random (usually exponential) interarrival
times [8], [16]. We assume that the query workload for
our applications consists of the superposition of two query
processes: a polling component that slowly scans the sensor
field at a fixed rate, and a random component that consists of
queries to different locations in the sensor field. Within this
random component it is equally likely that each location in the
sensor field will be sampled. This workload model is similar
to models used by others in [12], [13], [15]. Specifically, our
query workload is characterized by two parameters:

• τ = the period of the polling component of the query
workload (τ > 0); and

• λ = the average query arrival rate of a process that
represents the random component of our workload.

For simulated changes to the environment,λ and τ are
fixed: λ = 81 queries per second is used as the rate parameter
to generate queries with exponentially distributed interarrival
times with mean1/λ. The parameterτ is set to111.11 seconds
so that the arrival rate for polling queries is 9 queries per
second. Whenλ = 81 and τ = 111.11, the aggregate arrival
rate for queries is81 + 9 = 90 queries per second. Since the
total capacity of the sensor field access links is4× 25 = 100
queries per second, their average link utilization is 0.90 for “all
miss” runs, and less for runs that include some cache hits.

For trace-driven changes to the environment,λ = 0.81
queries per second andτ = 600 seconds. This makes the
average arrival rate for queries two orders of magnitude less
than query rate for simulated changes, namely 0.9 queries per
second. The average link utilization is also 0.90 for “all miss”
runs.

III. D ISCUSSION OFRESULTS

We wanted our simulated results to capture the fact that
sensor field readings are correlated in both space and time. In
our sensor field model, at timet+1, the value at each location
l is drawn from a normal distribution with mean

µl,t+1 =
1
3
µ +

1
3
µl,t +

1
3
µN(l),t.

The long-term mean of this distribution isµ = 0. The
standard deviationσ = 0.407514, and the tails are truncated
at minimum / maximum values ofσ − 6µ / σ + 6µ. This
standard deviation is the same as the standard deviation of the
system end-to-end delays during a set of 20 runs without a
cache for our 1000-node sensor network model.N(l) denotes
the neighbors of locationl, and each neighboring locationl′

of l contributes toµN(l),t in proportion toµl′,t/rl′ , whererl′

is the distance between locationsl and l′. This model for a
changing environment is based on the model for correlated
sensor network data developed by Jindal and Psounis [22].

Each data value presented in our results is derived by
averaging 20 simulation runs initialized with different seeds.
Additional details of our experimental methodology are de-
scribed in [23].

����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��


������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%�  �&'��(������

Fig. 4. Cost vs. Quality forA = 0.1 and Correlated
changes over 1000 locations.

����������	�


�

�

�

��

��

��

��� ��� ��	 ��� ��


������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%�  �&'��(������

Fig. 5. Cost vs. Quality forA = 0.1 and Trace-driven
changes over 54 locations.

����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� � ���

�	
��


�
��

�

�����

�

�����	�

����
	�
�����

��		�����	�
�����

��		��������
�����

�	���� �! "�
�����

#����$�%��&�	��	�

Fig. 6. Cost vs. Delay forA = 0.1 and Correlated
changes over 1000 locations.

����������	�


�

�

�

��

��

��

� � � � � �

	
��

�
�
��

��������

��������
�

�����
�������

��

����
�������

��

�������������

�
��� !�"!��������

#���$�%��&�
��
�

Fig. 7. Cost vs. Delay forA = 0.1 and Trace-driven
changes over 54 locations.



����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� ��	


�������������

�
�
��

��������

����������

������������

����� ��!�������

����� �����������

"�����#�$#�������

%�!! &�'��(�����

Fig. 8. Cost vs. Value deviation forA = 0.1 and
Correlated changes over 1000 locations.

����������	�


�

�

�

��

��

��

� ��� ��� ��� ���

�	
������	����

�
�
��

�

����

�

������

����
�
�����

������	��
�����

����������
�����

 ���	�!�"!�
�����

#����$	%�&������

Fig. 9. Cost vs. Value deviation forA = 0.1 and
Trace-driven changes over 54 locations.

The odd-numbered figures, Figures 5, 7, 9 and 11, show
results for light intensity in Lux measured over time in the Intel
Berkeley lab data set. These results are forT = 90 seconds,
and 0.9 queries per second. Note that because of Equation (1),
the maximum sensor field query rate,max(Rf ), is reduced to
54/90 = 0.6 queries per second. The even-numbered figures,
Figures 4, 6, 8 and 10, are for correlated changes to the
environment with both the age parameter,T , and the average
query rate scaled for the more rapidly changing environment.
Specifically,T = 8.88 seconds and the average user query
rate is 90 queries per second. Because of Equation (1), the
maximum sensor field query ratemax(Rf ) = 1000/T =
112.5 queries per second.

����������	
�����

�

���

���

���

���

���

��� ��� ��� ��� ��	


�����

�
�

�
��

�
��

��
��
�
�

������

��������

�����������

� ������!�������

� ���������������

"�����#�$#�������

%�!!�&�'��(�� ���

Fig. 10. Value deviation vs. Quality forA = 0.1 and
Correlated changes over 1000 locations.

����������	�


�

���

���

���

���

��� ��� ��� ��� ��	


�����

�
�

�
��

�
��

��
��
�
�

������

��������

�����������

� ������!�������

� ���������������

"�����#�$#�������

%�!!�&�'��(�� ���

Fig. 11. Value deviation vs. Quality forA = 0.1 and
Trace-driven changes over 54 locations.

We can draw two main conclusions from our experiments
using the correlated and trace-driven models for how the

environment changes. Results from these experiments appear
in Figures 4 through 13.

1. There is a cost vs. quality trade-off for some data quality
requirements but not others.For example, consider the results
shown in Figures 4 and 5. Figure 5 shows cost versus quality
for all seven caching and lookup policies, whereA = 0.1 and
the values at each location are changed according to the lab
trace [21]. At the smallest cost, we have a 100% cache hit
ratio (labeled “All hits”) that provides a quality of below 0.6
for zero cost. For the largest cost, we see that a 0% cache hit
ratio (labeled “All misses”) provides the third-best quality at a
cost of approximately 19 units. Recall that for quality, smaller
values indicate better quality. The remaining five caching and
lookup policies provide a linear trade-off between cost and
quality. Figure 4 also shows a trade-off between cost and
quality for the same value ofA and the same seven caching
and lookup policies, but with changes to the environment now
modeled by a series of values correlated in space and time.
There are two observations worth noting when comparing
these first two figures. First, the cost values in Figure 5 are
less than in Figure 4 because the distances within the sensor
field are smaller. Second, the trends are similar between these
two figures, with the exception of the increase in quality of
the “all misses” policy between Figure 4 and Figure 5. This
worse “all misses” quality is due entirely to an increase in the
normalized delay term in the left hand side of Equation (2).
This can be verified by comparing the relative differences in
delays between the policies, shown on the horizontal axes in
Figures 6 and 7.

We now examine system configurations for which delay
is the more important component of quality in more detail.
Figures 12 and 13 show such configurations for a value of
A = 0.9. The most remarkable result in these figures is
that there is no trade-off between cost and quality when
we significantly prioritize delay over value deviation. The
two greedy caching and lookup policies have the best cost
performance and the best quality performance for both models
of changing the environment in both Figures 12 and 13. Even
though the “all hits” policy has the best absolute performance
in these figures, we don’t consider this a practical policy since
it never updates the cache.

In studying Figures 4 through 13 it is interesting to un-
derstand which system variables depend on which system
parameters. For example, cost, delay, and hit ratio values in
these simulation results each depend on the following three
variables:

• The caching and lookup policies themselves (including
the value ofT ); the

• physical configuration of the sensor field; and the
• query arrival process.

Thus, a cost vs. delay or a cost vs. hit ratio graph is the same
for different experiments in which these three variables are
held constant. To see how cost and delay both increase with
lower cache hit ratios, Table I shows the cache hit ratio for
each of the (cost, delay) points in Figure 6. Similarly, Table II



����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 12. Cost vs. Quality forA = 0.9 and Correlated
changes over 1000 locations.

����������	�


�

�

�

��

��

��

��� ��� ��	 ��
 ���

������

�
�
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Fig. 13. Cost vs. Quality forA = 0.9 and Trace-driven
changes over 54 locations.

shows the hit ratio for each of the (cost, delay) points in
Figure 7.

Value deviation depends on the same parameters listed
above, and additionally on the manner in which the en-
vironment changes. Thus, cost vs. value deviation graphs
are the same when the policies, sensor field, query arrival
process, and method for changing the environment are all
identical. Figure 8 and Figure 9 show cost vs. value deviation
results for correlated changes and trace-driven changes to
the environment, respectively. The most interesting difference
between the two figures is the overall increase the dispersion
of the value deviations in Figure 9 when compared those in
Figure 8. This is because the variation in sensor field values is
much greater in the Intel Berkeley trace data than values that
are drawn from our normal distribution with a time-dependent
mean.

2. Different lookup policies perform best depending on
whether delay or value deviation is most important to the
application.If data quality is more important to the application
than cost, and value deviation is more important than delay,
simple lookups and piggybacked queries provide the best
performance. This can be seen in Figures 4 and 5. In both
of these figures, simple lookups and piggybacked queries
yield the best quality, other than the “all misses” policy for
correlated changes. When value deviation is most important,
the expense of taking a cache miss (by not computing an
approximate value from neighboring values for these two
policies) is worthwhile, since value deviation is deemed most
important. If query cost is at a premium compared with
quality, using greedy age lookups or greedy distance lookups
is preferred. These two policies have the most favorable cost
performance in both sensor field models, other than the “all
hits” case.

If delay is more important to quality than value deviation,
Figures 12 and 13 show that performing greedy age lookups
or doing greedy distance lookups yields the best performance.

This is true regardless of whether cost or quality is more
important to the application. We again assume that the “all
hits” case is not useful to realistic applications. For these
policies, getting the fast response time of a cache “hit”
(which might be approximated from values at one or more
neighboring locations) is worthwhile, since low delay is more
important than a more accurate value.

TABLE I

HIT RATIOS, COSTS, AND DELAYS FOR T = 8.88, 90 QUERIES PER

SECOND, AND CORRELATED CHANGES OVER1000LOCATIONS.

Policies Hit ratio Cost Delay
All hits 1 0 0
All misses 0 94 1.18
Simple lookup 0.40 56 0.69
Greedy age lookup 0.62 37 0.39
Greedy distance lookup 0.60 38 0.44
Median-of-3 lookup 0.55 43 0.51
Piggyback queries 0.40 57 0.69

TABLE II

HIT RATIOS, COSTS, AND DELAYS FOR T = 90, 0.9 QUERIES PER

SECOND, AND TRACE-DRIVEN CHANGES OVER54 LOCATIONS.

Policies Hit ratio Cost Delay
All hits 1 0 0
All misses 0 19 4.4
Simple lookup 0.59 7.7 1.0
Greedy age lookup 0.78 4.0 0.47
Greedy distance lookup 0.76 4.4 0.55
Median-of-3 lookup 0.71 5.4 0.68
Piggyback queries 0.59 7.7 1.0

The fact that different lookup policies perform best for
different application requirements can be explained by ex-
amining the underlying delays and value deviations of the
policies themselves. For example, consider the case where
A = 0.1 and changes to the environment are driven by
the lab traces. A value ofA = 0.1 biases quality toward
value deviation performance rather than delay performance.
In this case, both value deviation and quality performance
are best when using precise lookups and queries, as shown
in Figure 11. Figure 5 therefore shows that the data quality
supported by the simple lookup and piggyback query policies
is superior to the data quality supported by the greedy and
median-of-3 lookup policies.

Now consider the case whereA = 0.9 and changes to the
environment are again driven by the lab trace data. A value of
A = 0.9 biases quality toward delay performance rather than
value deviation performance. In this case, both delay and cost
performance are best for approximate lookups and queries,
as shown in Table II. Figure 13 thus shows that the query
cost incurred for doing greedy age lookups or greedy distance
lookups is superior to (i.e., less than) the query cost incurred
by the other policies for quality that is also better.

IV. CONCLUSION

The following are the contributions of this paper:

• Sensor network caching and lookup policies that improve
data quality and query cost.We measure the benefit



and cost of seven different caching and lookup policies
as a function of the application quality requirements.
We show that for some quality requirements (i.e., when
delay drives data quality), policies that emulate cache
hits by computing and returning approximate values for
sensor data yield a simultaneous quality improvement
and cost savings. This win-win is because when delay
is sufficiently important, the benefit to both query cost
and data quality achieved by using approximate values
outweighs the negative impact on quality due to the
approximation.

• Form and magnitude of the cost vs. quality trade-off.
For our seven caching and lookup policies, five of these
policies age and then delete cache entries uniformly based
on an age threshold parameter,T . We observe that in
many system configurations these five policies expose a
linear cost vs. quality trade-off. When this linearity is
present, we find that the underlying cost vs. accuracy
and/or cost vs. delay functions are also linear.

• Bounded cost for some caching and lookup policies.For
applications that require bounded resource consumption,
we identify a class of policies for which the sensor field
query rate can be bounded when servicing an arbitrary
workload of user queries. Recall that the domain for our
user queries is the set of discrete locations in the sensor
field. This upper bound is a function of two variables:
(1) the number of locations in each sensor field (these
locations are also used to index the cache) and; (2) the
age threshold parameter,T .

• Impact of the manner in which the environment changes
on query cost and data quality performance.Our results
characterize and quantify cost and quality performance
for two different sensor fields, which each monitor en-
vironments with different characteristics. These results
show that the form and magnitude of the cost and quality
performance change, however, the performance trends
generally remain the same. Specifically, the performance
differences between policies change, but the policies
that provide the best quality (and cost) performance in
different system configurations are almost always the
same.

ACKNOWLEDGMENTS

The authors would like to thank Eliot Moss and Weibo
Gong for their feedback on earlier drafts of this paper. The
researchers at the Intel Berkeley Research Lab also deserve
thanks for sharing the sensor network traces that we used in
this work.

REFERENCES

[1] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in sensor
networks: an energy-accuracy tradeoff,” inIEEE Workshop on Sensor
Network Protocols and Applications (SNPA). Piscataway, NJ, USA:
IEEE Press, May 2003.

[2] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “Balancing
energy efficiency and quality of aggregate data in sensor networks,”The
VLDB Journal, vol. 13, no. 4, pp. 384–403, 2004.

[3] S.-H. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz, “The
value of clustering in distributed estimation for sensor networks,” in
Proceedings of the IEEE International Conference on Wireless Networks,
Communications, and Mobile Computing (WirelessCom). Piscataway,
NJ, USA: IEEE Press, June 2005.

[4] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “Infrastructure trade-
offs for sensor networks,” inProceedings of the 1st ACM international
workshop on Wireless sensor networks and applications. New York,
NY, USA: ACM Press, Sept. 2002, pp. 49–58.

[5] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs
for data gathering in wireless sensor networks,” inProceedings of the
Conference on Computer Communications (IEEE Infocom). New York,
NY, USA: IEEE Communications Society, Mar. 2004.

[6] H. D. Schwetman, “CSIM 19: A powerful tool for building systems
models,” in Proceedings of the Winter Simulation Conference. New
York, NY, USA: ACM Press, Dec. 2001.

[7] ——, “Introduction to process-oriented simulation and CSIM,” inPro-
ceedings of the Winter Simulation Conference. New York, NY, USA:
ACM Press, Dec. 1990, pp. 154–157.

[8] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao, “The
Cougar project: a work-in-progress report,”ACM SIGMOD Record,
vol. 32, no. 4, pp. 53–59, Dec. 2003.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design
of an acquisitional query processor for sensor networks,” inProceedings
of the ACM SIGMOD International Conference on Management of Data.
New York, NY, USA: ACM Press, 2003, pp. 491–502.

[10] ——, “TinyDB: an acquisitional query processing system for sensor
networks,”ACM Transactions on Database Systems, vol. 30, no. 1, pp.
122–173, Mar. 2005.

[11] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: An
architecture for a world-wide sensor web,”IEEE Pervasive Computing,
vol. 2, no. 4, pp. 22–33, Oct. 2003.

[12] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,”IEEE/ACM Trans-
actions on Networking, vol. 11, no. 1, pp. 2–16, Feb. 2003.

[13] K. Jamieson, H. Balakrishnan, and Y. C. Tay, “Sift: a MAC protocol
for event-driven wireless sensor networks,” Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, USA,
Technical Report 894, May 2003.

[14] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He,
“RAP: a real-time communication architecture for large-scale wireless
sensor networks,” inIEEE Real-Time and Embedded Technology and
Applications Symposium. Washington, DC, USA: IEEE Computer
Society, Sept. 2002, pp. 55–66.

[15] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “Coda: congestion
detection and avoidance in sensor networks,” inACM SenSys Conference
on Embedded Networked Sensor Systems. New York, NY, USA: ACM
Press, Nov. 2003, pp. 266–279.

[16] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” inACM SenSys Conference on
Embedded Networked Sensor Systems. New York, NY, USA: ACM
Press, Nov. 2003, pp. 1–13.

[17] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford:
Oxford University Press, 1995.

[18] J. S. Bridle, “Probabilistic interpretation of feed-forward classification
network outputs, with relationships to statistical pattern recognition,”
Neurocomputing: Algorithms, Architecture and Applications, vol. 6,
1990.

[19] J. Han and M. Kamber,Data Mining: Concepts and Techniques. San
Francisco, California, USA: Morgan Kaufmann Publishers, 2000.

[20] C. Rodriguez, “A computational environment for data preprocessing in
supervised classifications,” Master’s thesis, University of Puerto Rico,
Mayaguez, July 2004.

[21] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,” inIn-
ternational Conference on Very Large Data Bases (VLDB). Toronto:
Morgan Kaufmann, Aug. 2004, pp. 588–599.

[22] A. Jindal and K. Psounis, “Modeling spatially-correlated sensor network
data,” in IEEE International Conference on Sensor and Ad hoc Commu-
nications and Networks (SECON). Piscataway, NJ, USA: IEEE Press,
Oct. 2004, pp. 162–171.

[23] D. J. Yates, “Scalable data delivery for networked servers and wireless
sensor networks,” Ph.D. dissertation, Department of Computer Science,
University of Massachusetts, Amherst, MA, Feb. 2006.


